Integration of Internet of Things in Conventional Vehicle Technology and Its Synergy with Vehicle Telematics Systems and Fleet Management Sequence
Keywords:
Internet of things, vehicle telematics systems, fleet management sequence, vehicle technology, automotive industryAbstract
The integration of internet of things (IoT) in conventional vehicle technology poses several challenges, and the need for standardized communication protocols, as such, the synergy between IoT and vehicle telematics systems (VTS) raises questions about data privacy, ownership and control. On the other hand, the traditional approach to fleet management often involves manual processes and limited real-time data, leading to inefficiencies and increased operational costs. However, the implementation of IoT in fleet management systems poses technical, security and privacy concerns that need to be addressed. This study employed a qualitative research approach, utilizing literature review and case studies to analyse the integration of IoT in conventional vehicle technology and its synergy with VTS and fleet management sequence (FMS). The analysis focused on identifying the benefits and challenges of IoT integration and exploring best practices for optimizing FMS. The findings revealed that, integration of IoT in vehicle technology offers several solutions such as enabling real-time monitoring, predictive maintenance and data-driven decision-making. This has resulted in significant improvements in fleet management, including enhanced vehicle tracking, predictive maintenance and fuel efficiency. Real-time data analytics and remote monitoring capabilities have also enabled fleet managers to make informed decisions and optimize operational processes. However, it was observed that challenges such as data security, interoperability, and integration complexity remain barriers to widespread adoption of IoT in fleet management. Similarly, the integration of IoT in VTS offer numerous benefits, including real-time monitoring, predictive maintenance, and enhanced driver assistance systems. However, challenges such as data security, interoperability, and privacy concerns must be addressed to fully realize the potential of this integration. The findings suggest that while IoT integration in conventional vehicle technology has the potential to revolutionize VTS and FMS by improving vehicle performance and efficiency in the automotive industry, careful consideration must be given to address the associated challenges while developing robust data governance policies and standardized protocols for proper regulation.
References
[1] Bathla, G., Bhadane, K., Singh, R. K., Kumar, R., Aluvalu, R., Krishnamurthi, R., ... & Basheer, S. (2022). Autonomous vehicles and intelligent automation: applications, challenges, and opportunities. Mobile information systems, 1, 7632892. DOI: 10.1155/2022/7632892
[2] Khayyam, H., Javadi, B., Jalili, M., & Jazar, R. N. (2020). Artificial intelligence and internet of things for autonomous vehicles. In Jazar, R. N. & Dai, L. (Eds.), Nonlinear approaches in engineering applications: automotive applications of engineering problems (pp. 39–68). Cham: springer international publishing. DOI: 10.1007/978-3-030-18963-1_2
[3] Ud Din, I., Guizani, M., Hassan, S., Kim, B.-S., Khurram Khan, M., Atiquzzaman, M., & Ahmed, S. H. (2019). The internet of things: a review of enabled technologies and future challenges. IEEE access, 7, 7606–7640. DOI: 10.1109/ACCESS.2018.2886601
[4] Rahim, M. A., Rahman, M. A., Rahman, M. M., Asyhari, A. T., Bhuiyan, M. Z. A., & Ramasamy, D. (2021). Evolution of IoT-enabled connectivity and applications in automotive industry: a review. Vehicular communications, 27, 100285. DOI: 10.1016/j.vehcom.2020.100285
[5] Mohammed, K., Abdelhafid, M., Kamal, K., Ismail, N., & Ilias, A. (2023). Intelligent driver monitoring system: an internet of things based system for tracking and identifying the driving behavior. Computer standards & interfaces, 84, 103704. DOI: 10.1016/j.csi.2022.103704
[6] Chen, L. W., & Chen, H. M. (2021). Driver behavior monitoring and warning with dangerous driving detection based on the internet of vehicles. IEEE transactions on intelligent transportation systems, 22(11), 7232–7241. DOI: 10.1109/TITS.2020.3004655
[7] Mantouka, E., Barmpounakis, E., Vlahogianni, E., & Golias, J. (2021). Smartphone sensing for understanding driving behavior: current practice and challenges. International journal of transportation science and technology, 10(3), 266–282. DOI: 10.1016/j.ijtst.2020.07.001
[8] Feng, X., & Hu, J. (2020). Research on the identification and management of vehicle behaviour based on Internet of things technology. Computer communications, 156, 68–76. DOI: 10.1016/j.comcom.2020.03.035
[9] Abdulraheem, A. S., Salih, A. A., Abdulla, A. I., Sadeeq, M. A., Salim, N. O., Abdullah, H., … Saeed, R. A. (2020). Home automation system based on IoT. Technology reports of kansai university, 62(5), 2453. https://acesse.dev/ipjTJ
[10] Stolojescu-Crisan, C., Crisan, C., & Butunoi, B. P. (2021). An iot-based smart home automation system. Sensors, 21(11), 3784. DOI: 10.3390/s21113784
[11] Priyan, M. K., & Devi, G. U. (2019). A survey on internet of vehicles: applications, technologies, challenges and opportunities. International journal of advanced intelligence paradigms, 12(1–2), 98–119. DOI: 10.1504/IJAIP.2019.096957
[12] Shah, S. H., & Yaqoob, I. (2016). A survey: internet of things (IoT) technologies, applications and challenges. 2016 IEEE smart energy grid engineering (SEGE) (pp. 381–385). DOI: 10.1109/SEGE.2016.7589556
[13] Farahpoor, M., Esparza, O., & Soriano, M. (2023). Comprehensive IoT-driven fleet management system for industrial vehicles. IEEE access, 1. DOI: 10.1109/ACCESS.2023.3343920
[14] Ghaffarpasand, O., Burke, M., Osei, L. K., Ursell, H., Chapman, S., & Pope, F. D. (2022). Vehicle telematics for safer, cleaner and more sustainable urban transport: a review. Sustainability, 14(24), 16386. DOI: 10.3390/su142416386
[15] Young, R., Fallon, S., Jacob, P., & O'Dwyer, D. (2020). Vehicle telematics and its role as a key enabler in the development of smart cities. IEEE sensors journal, 20(19), 11713–11724. DOI: 10.1109/JSEN.2020.2997129
[16] Abdul-Yekeen, A. M., Rasaq, O., Ayinla, M. A., Sikiru, A., Kujore, V., & Agboola, T. O. (2024). Utilising the internet of things (IoT), artificial intelligence, machine learning, and vehicle telematics for sustainable growth in small and medium firms (SMEs). Journal of artificial intelligence general science (JAIGS) ISSN:3006-4023, 5(1), 237–274. DOI: 10.60087/jaigs.v5i1.197
[17] Hahn, D., Munir, A., & Behzadan, V. (2021). Security and privacy issues in intelligent transportation systems: classification and challenges. IEEE intelligent transportation systems magazine, 13(1), 181–196. DOI: 10.1109/MITS.2019.2898973
[18] McDonnell, K., Murphy, F., Sheehan, B., Masello, L., Castignani, G., & Ryan, C. (2021). Regulatory and technical constraints: an overview of the technical possibilities and regulatory limitations of vehicle telematic data. Sensors, 21(10), 3517. DOI: 10.3390/s21103517
[19] Smuts, M., Scholtz, B., & Wesson, J. (2019). Issues in implementing a data integration platform for electric vehicles using the internet of things. Internet of things. information processing in an increasingly connected world (pp. 160–177). Cham: springer international publishing. DOI: 10.1007/978-3-030-15651-0_14
[20] Manso, M., Guerra, B., Carjan, C., Sdongos, E., Bolovinou, A., Amditis, A., & Donaldson, D. (2018). The application of telematics and smart devices in emergencies. In Gravina, R. … Fortino, G. (Eds.), Integration, interconnection, and interoperability of iot systems (pp. 169–197). Cham: springer international publishing. DOI: 10.1007/978-3-319-61300-0_9
[21] Bolaños, C., Rojas, B., Salazar-Cabrera, R., Ramírez-González, G., Pachón de la Cruz, Á., & Madrid Molina, J. M. (2022). Fleet management and control system for developing countries implemented with intelligent transportation systems (ITS) services. Transportation research interdisciplinary perspectives, 16, 100694. DOI: 10.1016/j.trip.2022.100694
[22] Guerrero-ibanez, J. A., Zeadally, S., & Contreras-Castillo, J. (2015). Integration challenges of intelligent transportation systems with connected vehicle, cloud computing, and internet of things technologies. IEEE wireless communications, 22(6), 122–128. DOI: 10.1109/MWC.2015.7368833
[23] Barbeau, S. J., Georggi, N. L., & Winters, P. L. (2010). Global positioning system integrated with personalised real-time transit information from automatic vehicle location. Transportation research record, 2143(1), 168–176. DOI: 10.3141/2143-21
[24] Ammar, M., Janjua, H., Thangarajan, A. S., Crispo, B., & Hughes, D. (2020). Securing the on-board diagnostics port (OBD-II) in vehicles. SAE international journal of transportation cybersecurity and privacy, 2(2), 83–106. DOI: 10.4271/11-02-02-0009
[25] Lokman, S.-F., Othman, A. T., & Abu-Bakar, M.-H. (2019). Intrusion detection system for automotive controller area network (CAN) bus system: a review. EURASIP journal on wireless communications and networking, 2019(1), 184. DOI: 10.1186/s13638-019-1484-3
[26] Ortiz, F. M., Sammarco, M., Costa, L. H. M. K., & Detyniecki, M. (2020). Vehicle telematics via exteroceptive sensors: a survey. ArXiv preprint arxiv:2008.12632. DOI: 10.48550/arXiv.2008.12632
[27] Munoz-Ausecha, C., Ruiz-Rosero, J., & Ramirez-Gonzalez, G. (2021). RFID applications and security review. Computation, 9(6), 69. DOI: 10.3390/computation9060069
[28] Ibrahim, A., Eltawil, A., Na, Y., & El-Tawil, S. (2020). Accuracy limits of embedded smart device accelerometer sensors. IEEE transactions on instrumentation and measurement, 69(8), 5488–5496. DOI: 10.1109/TIM.2020.2964912
[29] Bedi, P., Goyal, S. B., Kumar, J., & Choudhary, S. (2022). Smart automobile health monitoring system. In Kumar, R. … Pattnaik, P. K. (Eds.), Multimedia technologies in the internet of things environment, volume 2 (pp. 127–146). Singapore: springer singapore. DOI: 10.1007/978-981-16-3828-2_7
[30] Vujanović, D., Momčilović, V., Bojović, N., & Papić, V. (2012). Evaluation of vehicle fleet maintenance management indicators by application of DEMATEL and ANP. Expert systems with applications, 39(12), 10552–10563. DOI: 10.1016/j.eswa.2012.02.159
[31] Rojas, B., Bolanos, C., Salazar-Cabrera, R., Ramirez-González, G., de la Cruz, A., & Madrid Molina, J. M. (2020). Fleet management and control system for medium-sized cities based in intelligent transportation systems: from review to proposal in a city. Electronics, 9(9), 1383. DOI: 10.3390/electronics9091383
[32] He, W., Yan, G., & Xu, L. Da. (2014). Developing vehicular data cloud services in the IoT environment. IEEE transactions on industrial informatics, 10(2), 1587–1595. DOI: 10.1109/TII.2014.2299233
[33] Punith, M. S., Nithya, M., & Deepa, K. (2022). IoT enabled smart fleet management [presentation]. 2022 ieee 4th international conference on cybernetics, cognition and machine learning applications (icccmla) (pp. 256–260). DOI: 10.1109/ICCCMLA56841.2022.9989097
[34] Kumar, B., Milind, S., & Srivastava, M. (2024). Advancement of advanced driver assistance system in automobiles through iot implementation and integration. 2024 international conference on advances in computing, communication and applied informatics (ACCAI) (pp. 1–9). IEEE. DOI: 10.1109/ACCAI61061.2024.10602264
[35] Oladimeji, D., Gupta, K., Kose, N. A., Gundogan, K., Ge, L., & Liang, F. (2023). Smart transportation: an overview of technologies and applications. Sensors, 23(8), 3880. DOI: 10.3390/s23083880
[36] Muthumanickam, A., Balasubramanian, G., & Chakrapani, V. (2023). Vehicle health monitoring and accident avoidance system based on IoT model. Journal of intelligent & fuzzy systems, 44, 2561–2576. DOI: 10.3233/JIFS-222719
[37] Muthuramalingam, S., Bharathi, A., Rakesh kumar, S., Gayathri, N., Sathiyaraj, R., & Balamurugan, B. (2019). IoT based intelligent transportation system (IoT-ITS) for global perspective: a case study. In Balas, V. E. … Khari, M. (Eds.), Internet of things and big data analytics for smart generation (pp. 279–300). Cham: springer international publishing. DOI: 10.1007/978-3-030-04203-5_13
[38] Husak, V., Chyrun, L., Matseliukh, Y., Gozhyj, A., Nanivskyi, R., & Luchko, M. (2021). Intelligent real-time vehicle tracking information system. MoMLeT+ ds (pp. 666–698). CEUR Workshop Proceedings https://api.semanticscholar.org/CorpusID:236477629
[39] Koupal, J. W., DenBleyker, A., Manne, G., Batista, M. H., & Schmitt, T. (2022). Capabilities and limitations of telematics for vehicle emissions inventories. Transportation research record, 2676(3), 49–57. DOI: 10.1177/03611981211049109
[40] Oyler, A., & Saiedian, H. (2016). Security in automotive telematics: a survey of threats and risk mitigation strategies to counter the existing and emerging attack vectors. Security and communication networks, 9(17), 4330–4340. DOI: 10.1002/sec.1610
[41] Powell, B., & Chandran, S. (2019). Improving fleet management strategy and operational intelligence with predictive analytics. In Anandarajan, M. & Harrison, T. D. (Eds.), Aligning business strategies and analytics: bridging between theory and practice (pp. 51–66). Cham: springer international publishing. DOI: 10.1007/978-3-319-93299-6_4
[42] Michelaraki, E., Katrakazas, C., Yannis, G., Filtness, A., Talbot, R., Hancox, G., … Taveira, R. (2021). Post-trip safety interventions: state-of-the-art, challenges, and practical implications. Journal of safety research, 77, 67–85. DOI: 10.1016/j.jsr.2021.02.005
[43] Wedeniwski, S., & Perun, S. (2017). Platform for a cognitive vehicle life. In My cognitive automobile life: digital divorce from a cognitive personal assistant (pp. 55–167). Berlin, Heidelberg: springer Berlin Heidelberg. DOI: 10.1007/978-3-662-54677-2_2
[44] Verma, R., Singh, B. K., & Zahidi, F. (2024). Management of GPS tracking systems in transportation. In Upadhyay, R. K. … Kumar, V. (Eds.), Intelligent transportation system and advanced technology (pp. 251–263). Singapore: springer nature Singapore. DOI: 10.1007/978-981-97-0515-3_11
[45] Kukreja, V., Marwaha, A., Sareen, B., & Modgil, A. (2020). AFTSMS:automatic fleet tracking & scheduling management system. 2020 8th international conference on reliability, infocom technologies and optimisation (trends and future directions) (ICRITO) (pp. 114–118). IEEE. DOI: 10.1109/ICRITO48877.2020.9197819
[46] Lee, S., Tewolde, G., & Kwon, J. (2014). Design and implementation of vehicle tracking system using gps/gsm/gprs technology and smartphone application. 2014 IEEE world forum on internet of things (wf-iot) (pp. 353–358). IEEE. DOI: 10.1109/WF-IoT.2014.6803187
[47] Campos Ferreira, A. E., Lozoya Santos, J. de J., Tudon Martinez, J. C., Mendoza, R. A. R., Vargas Martinez, A., Morales Menendez, R., & Lozano, D. (2023). Vehicle and driver monitoring system using on-board and remote sensors. Sensors, 23(2), 814. DOI: 10.3390/s23020814
[48] Lallie, H. S. (2020). Dashcam forensics: a preliminary analysis of 7 dashcam devices. Forensic science international: digital investigation, 33, 200910. DOI: 10.1016/j.fsidi.2020.200910
[49] Carvalho, S. B., & Costa, D. G. (2024). In-vehicle camera sensing: hardware, urban applications and research trends [presentation]. 2024 IEEE 22nd mediterranean electrotechnical conference (melecon) (pp. 768–773). IEEE. DOI: 10.1109/MELECON56669.2024.10608678
[50] Koomen, J. M., & Fenik, A. P. (2021). Impact analysis: electronic logging devices in the transportation industry. International journal of automation and logistics, 3(2), 137–151. DOI: 10.1504/IJAL.2021.112767
[51] Ekanem, I., & Ikpe, A. (2024). A technical survey on the role of robotics in conventional manufacturing process: an element of industry 4.0. Journal of scientific and industrial research, 8, 172–192. https://www.researchgate.net/publication/378310688_A_Technical_Survey_on_The_Role_of_Robotics_in_Conventional_Manufacturing_Process_An_Element_of_Industry_40
[52] Abdelkader, G., Elgazzar, K., & Khamis, A. (2021). Connected vehicles: technology review, state of the art, challenges and opportunities. Sensors, 21(22), 7712. DOI: 10.3390/s21227712
[53] Krasniqi, X., & Hajrizi, E. (2016). Use of IoT technology to drive the automotive industry from connected to full autonomous vehicles. IFAC-papersonline, 49(29), 269–274. DOI: 10.1016/j.ifacol.2016.11.078
[54] R, D. K., & A, R. (2023). Revolutionising intelligent transportation systems with cellular vehicle-to-everything (C-V2X) technology: current trends, use cases, emerging technologies, standardisation bodies, industry analytics and future directions. Vehicular communications, 43, 100638. DOI: 10.1016/j.vehcom.2023.100638
[55] Ameen, H. A., Mahamad, A. K., Saon, S., Nor, D. M., & Ghazi, K. (2020). A review on vehicle to vehicle communication system applications. Indonesian journal of electrical engineering and computer science, 18(1), 188–198. DOI: 10.11591/ijeecs.v18.i1.pp188-198
[56] Zeadally, S., Guerrero, J., & Contreras, J. (2020). A tutorial survey on vehicle-to-vehicle communications. Telecommunication systems, 73(3), 469–489. DOI: 10.1007/s11235-019-00639-8
[57] He, W., Li, H., Zhi, X., Li, X., Zhang, J., Hou, Q., & Li, Y. (2019). Overview of v2v and V2I wireless communication for cooperative vehicle infrastructure systems. 2019 IEEE 4th advanced information technology, electronic and automation control conference (IAEAC) (pp. 127–134). IEEE. DOI: 10.1109/IAEAC47372.2019.8997786
[58] Dey, K. C., Rayamajhi, A., Chowdhury, M., Bhavsar, P., & Martin, J. (2016). Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication in a heterogeneous wireless network – Performance evaluation. Transportation research part c: emerging technologies, 68, 168–184. DOI: 10.1016/j.trc.2016.03.008
[59] Gupta, M., & Sandhu, R. (2018). Authorisation framework for secure cloud assisted connected cars and vehicular internet of things. Proceedings of the 23nd acm on symposium on access control models and technologies (pp. 193–204). New York, NY, USA: association for computing machinery. DOI: 10.1145/3205977.3205994
[60] Niu, M., Huang, X., & Wang, H. (2022). Vehicle-to-anything: the trend of internet of vehicles in future smart cities. In Intelligent electronics and circuits-terahertz, its, and beyond. IntechOpen. https://books.google.com/books?id=UrGTEAAAQBAJ&printsec=frontcover
[61] Altaf, I., & Kaul, A. (2021). Vulnerable road user safety: a systematic review and mesh-networking based vehicle ad hoc system using hybrid of neuro-fuzzy and genetic algorithms. International journal of communication systems, 34(13), e4907. DOI: 10.1002/dac.4907
[62] Umoren, I. A., Shakir, M. Z., & Tabassum, H. (2021). Resource efficient vehicle-to-grid (V2G) communication systems for electric vehicle enabled microgrids. IEEE transactions on intelligent transportation systems, 22(7), 4171–4180. DOI: 10.1109/TITS.2020.3023899
[63] Liu, C., Chau, K. T., Wu, D., & Gao, S. (2013). Opportunities and challenges of vehicle-to-home, vehicle-to-vehicle, and vehicle-to-grid technologies. Proceedings of the ieee, 101(11), 2409–2427. DOI: 10.1109/JPROC.2013.2271951
[64] Priyanka, E. B., Shankar, M. G., Tharun, S., Ravisankar, S., Saravanan, S. N., Kumar, B. B., & Pugazhenthi, C. (2021). Real-time performance analysis of multiple parameters of automotive sensor's can data to predict vehicle driving efficiency. International journal of computing and digital system, 1337–1357. DOI: 10.12785/ijcds/1101109
[65] Gnap, J., Jagelčák, J., Marienka, P., Frančák, M., & Kostrzewski, M. (2021). Application of MEMS sensors for evaluation of the dynamics for cargo securing on road vehicles. Sensors, 21(8), 2881. DOI: 10.3390/s21082881
[66] Al-Turjman, F., & Lemayian, J. P. (2020). Intelligence, security, and vehicular sensor networks in internet of things (IoT) enabled smart-cities: an overview. Computers & electrical engineering, 87, 106776. DOI: 10.1016/j.compeleceng.2020.106776
[67] Dima, D. S., & Covaciu, D. (2017). Solutions for acceleration measurement in vehicle crash tests. IOP conference series: materials science and engineering, 252(1), 12007. DOI: 10.1088/1757-899X/252/1/012007
[68] Fleming, W. J. (2001). Overview of automotive sensors. IEEE sensors journal, 1(4), 296–308. DOI: 10.1109/7361.983469
[69] Sehrawat, D., & Gill, N. S. (2019). Smart sensors: analysis of different types of iot sensors. 2019 3rd international conference on trends in electronics and informatics (ICOEI) (pp. 523–528). IEEE. DOI: 10.1109/ICOEI.2019.8862778
[70] Thanh Chi Phan, & Prabhdeep Singh. (2023). A recent connected vehicle - iot automotive application based on communication technology. International journal of data informatics and intelligent computing, 2(4 SE-regular issue), 40–51. DOI: 10.59461/ijdiic.v2i4.88
[71] Ali, E. S., Hasan, M. K., Hassan, R., Saeed, R. A., Hassan, M. B., Islam, S., … Bevinakoppa, S. (2021). Machine learning technologies for secure vehicular communication in internet of vehicles: recent advances and applications. Security and communication networks, 2021(1), 8868355. DOI: 10.1155/2021/8868355
[72] Agbaje, P., Anjum, A., Mitra, A., Oseghale, E., Bloom, G., & Olufowobi, H. (2022). Survey of Interoperability Challenges in the Internet of Vehicles. IEEE transactions on intelligent transportation systems, 23(12), 22838–22861. DOI: 10.1109/TITS.2022.3194413
[73] Siddiqa, A., Shah, M. A., Khattak, H. A., Akhunzada, A., Ali, I., Razak, Z. Bin, & Gani, A. (2018). Social internet of vehicles: complexity, adaptivity, issues and beyond. IEEE access, 6, 62089–62106. DOI: 10.1109/ACCESS.2018.2872928
[74] Dr. Elena Ferrari. (2022). IoT-enabled environmental monitoring for autonomous vehicle safety. Journal of ai-assisted scientific discovery, 2(1 SE-Articles), 86–107. https://scienceacadpress.com/index.php/jaasd/article/view/68
[75] Dr. Jérémy Fix. (2023). IoT-enabled intelligent traffic management systems for autonomous vehicle integration. Journal of artificial intelligence research and applications, 3(1 SE-articles), 1–24. https://aimlstudies.co.uk/index.php/jaira/article/view/85
[76] Pirbhulal, S., Wu, W., Muhammad, K., Mehmood, I., Li, G., & de Albuquerque, V. H. C. (2020). Mobility enabled security for optimising iot based intelligent applications. IEEE network, 34(2), 72–77. DOI: 10.1109/MNET.001.1800547
[77] Contreras-Castillo, J., Zeadally, S., & Guerrero-Ibañez, J. A. (2018). Internet of vehicles: architecture, protocols, and security. IEEE internet of things journal, 5(5), 3701–3709. DOI: 10.1109/JIOT.2017.2690902
[78] Vasilescu, I., Kotay, K., Rus, D., Dunbabin, M., & Corke, P. (2005). Data collection, storage, and retrieval with an underwater sensor network. Proceedings of the 3rd international conference on embedded networked sensor systems (pp. 154–165). New York, NY, USA: association for computing machinery. DOI: 10.1145/1098918.1098936
[79] Butt, F. A., Chattha, J. N., Ahmad, J., Zia, M. U., Rizwan, M., & Naqvi, I. H. (2022). On the integration of enabling wireless technologies and sensor fusion for next-generation connected and autonomous vehicles. IEEE access, 10, 14643–14668. DOI: 10.1109/ACCESS.2022.3145972
[80] Piyare, R., & Lee, S. R. (2013). Towards internet of things (IOTS): integration of wireless sensor network to cloud services for data collection and sharing. CoRR, abs/1310.2. DOI: 10.5121/ijcnc.2013.5505
[81] Gerla, M., Lee, E.-K., Pau, G., & Lee, U. (2014). Internet of vehicles: from intelligent grid to autonomous cars and vehicular clouds. 2014 IEEE world forum on internet of things (wf-iot) (pp. 241–246). DOI: 10.1109/WF-IoT.2014.6803166
[82] Strandberg, K., Nowdehi, N., & Olovsson, T. (2023). A systematic literature review on automotive digital forensics: challenges, technical solutions and data collection. IEEE transactions on intelligent vehicles, 8(2), 1350–1367. DOI: 10.1109/TIV.2022.3188340
[83] Coppola, R., & Morisio, M. (2016). Connected car: technologies, issues, future trends. ACM comput. surv., 49(3). DOI: 10.1145/2971482
[84] Srinivasan, A. (2018). IoT cloud based real time automobile monitoring system. 2018 3rd IEEE international conference on intelligent transportation engineering (ICITE) (pp. 231–235). IEEE. DOI: 10.1109/ICITE.2018.8492706
[85] Pourrahmani, H., Yavarinasab, A., Zahedi, R., Gharehghani, A., Mohammadi, M. H., Bastani, P., & Van herle, J. (2022). The applications of internet of things in the automotive industry: a review of the batteries, fuel cells, and engines. Internet of things, 19, 100579. DOI: 10.1016/j.iot.2022.100579
[86] Liyakat, K. S. S., & Liyakat, K. K. S. (2023). IoT in electrical vehicle: a study. Journal of control and instrumentation engineering, 9(3), 15–21. https://acesse.dev/1P39x
[87] Abdul-Qawy, A. S., Pramod, P. J., Magesh, E., & Srinivasulu, T. (2015). The internet of things (IOT): an overview. International journal of engineering research and applications, 5(12), 71–82. https://www.academia.edu/download/63855519/The_Internet_of_Things_IoT_An_Overview20200707-23968-7qzfsj.pdf
[88] Nižetić, S., Šolić, P., López-de-Ipiña González-de-Artaza, D., & Patrono, L. (2020). Internet of things (IoT): opportunities, issues and challenges towards a smart and sustainable future. Journal of cleaner production, 274(20), 122877. DOI: 10.1016/j.jclepro.2020.122877
[89] Iqbal, A., & Rana, M. E. (2019). Adoption of IOT in automobiles for driver's safety: key considerations and major challenges. International journal of scientific & technology research, 8, 1378–1384. https://www.academia.edu/download/63457790/Adoption-Of-Iot-In-Automobiles-For-Drivers-Safety-Key-Considerations-And-Major-Challenges-20200528-119400-wor0h5.pdf
[90] Agarwal, V., Sharma, S., & Agarwal, P. (2021). IoT based smart transport management and vehicle-to-vehicle communication system. Computer networks, big data and IOT (pp. 709–716). Singapore: springer singapore. DOI: 10.1007/978-981-16-0965-7_55